Huaqiao University 2019 Fall Final Exam Test B

Department \qquad Course \qquad Linear Algebra

Date \qquad 2019/12/12

Name \qquad Number \qquad

	1	2	3	4	5	6	total
Grade							

1 (50 pts). Fill in the blanks (Write your answer on the attached sheet. 5 pts/each question)
(1) Let $A=\left[\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right]\left[\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$. Find A^{k} where k is any positive integer. Your answer: \qquad
(2) Let A, B be 4×4 matrices. $\operatorname{det} A=\frac{1}{2}, \operatorname{det} B=-3, \operatorname{det}\left(2 A B^{-1} A^{-1}\right)=$ \qquad
(3) Let $A=\left[\begin{array}{cccc}2 & 1 & 2 & -1 \\ 0 & 0 & -2 & 0 \\ -1 & -4 & 3 & -2 \\ -1 & -2 & 2 & -1\end{array}\right]$. Compute the cofactors and the determinant.
$C_{23}=$ \qquad $C_{33}=$ \qquad and $\operatorname{det} A=$ \qquad
(4) Let $S \subset \mathbb{R}^{2}$ be a parallelogram whose vertices are $(0,-1),(1,2),(-1,3),(-2,0)$. The area of S is \qquad
(5) Using Cramer's rule to solve the system of linear equations, $2 s x_{1}+3 x_{2}=1, x_{1}-s x_{2}=s$. We know that $x_{1}=\frac{\operatorname{det} A_{1}(b)}{\operatorname{det} A} . A=$ \qquad $; \operatorname{det} A_{2}(b)=$ \qquad
(6) Let $V=\{$ differentiable real valued functions on $(0,1)\}$ and $W=\{$ real valued functions on $(0,1)\}$. Let $D: V \rightarrow W$ be given by $f \mapsto \frac{d f}{d x}$. The kernel of D is the set of \qquad functions on
$(0,1) . \operatorname{dim} \operatorname{ker} D=$ \qquad ; $\operatorname{dim} V=$
(7) A basis of P_{2} is given by $1,2 t,-2+4 t^{2}$. The coordinate vector of $p(t)=2 t^{2}+t$ is \qquad
(8) If A is a 6×4 matrix, what is the smallest possible dimension of Nul A? Your answer: \qquad
(9) Let A be a 2×2 matrix with eigenvalues 2 and $\frac{1}{2}$ and corresponding eigenvectors $v_{1}=$ $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$. Let $x_{k+1}=A x_{k}$ and $x_{0}=\left[\begin{array}{l}2 \\ 0\end{array}\right]$. From this information we can conclude that $x_{1}=$ \qquad and the equation of the asymptotic line for large k is \qquad
(10) Let $A=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1\end{array}\right]$. The number of eigenvalues for A is \qquad . List the eigenvalues with algebraic multiplicity 2 :
2. (10pts) Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$. Find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.
3. (10pts) Define $T: P_{2} \rightarrow \mathbb{R}^{2}$ by $T(\boldsymbol{p})=\left[\begin{array}{l}\boldsymbol{p}(1) \\ \boldsymbol{p}(0)\end{array}\right]$.
(a) Find the image under T of $\boldsymbol{p}(t)=1-t-t^{2}$.
(b) Find a polynomial whose image under T is $\left[\begin{array}{l}\mathbf{1} \\ \mathbf{0}\end{array}\right]$.
(c) Find the matrix for T relative to the basis $\left\{-1,-t, t^{2}\right\}$.
4. (10pts) For what values of $a, b \in \mathbb{R}$ is the matrix $\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$ diagonalizable. For what values of $a, b \in \mathbb{R}$ is the matrix is the matrix $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ diagonalizable? Explain your answer.
5. (12pts) Let $A=\left[\begin{array}{ccccc}2 & 6 & 2 & 2 & 4 \\ -1 & -2 & -1 & 1 & -2 \\ 5 & 15 & 5 & 3 & 14 \\ 2 & 7 & 2 & 2 & 8\end{array}\right]$. Find a basis for Nul A, Col A, Row A respectively.
6. (8pts) Consider the discrete dynamic system $x_{k+1}=A x_{k}$ where $A=\left[\begin{array}{cc}\frac{3}{4} & p \\ \frac{1}{16} & \frac{3}{4}\end{array}\right]$.
(a) If A has 2 positive real eigenvalues, for what values of p is the origin an attractor? And for what values of p is the origin a saddle point?
(b) When $-1<p<0$, is the origin an attractor or a repeller? Explain.
(c) When $p=1$, we can conclude that $x_{k}=c_{1} \lambda_{1}^{k} v_{1}+c_{2} \lambda_{2}^{k} v_{2}$. Find $\lambda_{1}, \lambda_{2}, v_{1}, v_{2}$.
(d) When $p=1$, the trajectory starting from a general point $x_{0}=\left[\begin{array}{l}r_{1} \\ r_{2}\end{array}\right]$ is lying on a line l_{1} and will approach another line l_{2}. Find the equation of l_{1} and l_{2}.

