Huaqiao University 2019 Fall Final Exam Test B

Department Course Linear Algebra Date 2019/12/12 Number Name 1 2 3 4 5 6 total Grade 1 (50pts). Fill in the blanks (Write your answer on the attached sheet. 5pts/each question) (1) Let $A = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$. Find A^k where k is any positive integer. Your answer: (2) Let A, B be 4×4 matrices. $det A = \frac{1}{2}$, det B = -3, $det(2AB^{-1}A^{-1}) =$ _____ (3) Let $A = \begin{bmatrix} 2 & 1 & 2 & -1 \\ 0 & 0 & -2 & 0 \\ -1 & -4 & 3 & -2 \end{bmatrix}$. Compute the cofactors and the determinant. $C_{23} = _ C_{33} = _$ and $det A = _$ (4) Let $S \subset \mathbb{R}^2$ be a parallelogram whose vertices are (0, -1), (1, 2), (-1, 3), (-2, 0). The area of S is (5) Using Cramer's rule to solve the system of linear equations, $2sx_1 + 3x_2 = 1$, $x_1 - sx_2 = s$. We know that $x_1 = \frac{\det A_1(b)}{\det A}$. A =_____; $\det A_2(b) =$ ______; (6) Let $V = \{$ differentiable real valued functions on (0,1) $\}$ and $W = \{$ real valued functions on (0,1)}. Let $D: V \to W$ be given by $f \mapsto \frac{df}{dx}$. The kernel of D is the set of ______ functions on (0,1). $\dim \ker D = __; \dim V = ___$ (7) A basis of P_2 is given by $1,2t,-2+4t^2$. The coordinate vector of $p(t) = 2t^2 + t$ is _____ (8) If A is a 6×4 matrix, what is the smallest possible dimension of Nul A? Your answer: (9) Let A be a 2 × 2 matrix with eigenvalues 2 and $\frac{1}{2}$ and corresponding eigenvectors $v_1 =$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Let $x_{k+1} = Ax_k$ and $x_0 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. From this information we can conclude that $x_1 =$ _____ and the equation of the asymptotic line for large k is ______ (10) Let $A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \end{bmatrix}$. The number of eigenvalues for A is _____. List the eigenvalues with algebraic multiplicity 2:

2. (10pts) Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. Find an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$.

3. (10pts) Define $T: P_2 \to \mathbb{R}^2$ by $T(\boldsymbol{p}) = \begin{bmatrix} \boldsymbol{p}(1) \\ \boldsymbol{p}(0) \end{bmatrix}$. (a) Find the image under T of $\boldsymbol{p}(t) = 1 - t - t^2$.

- r11
- (b) Find a polynomial whose image under T is $\begin{bmatrix} 1\\ 0 \end{bmatrix}$.
- (c) Find the matrix for T relative to the basis $\{-1, -t, t^2\}$.

4. (10pts) For what values of $a, b \in \mathbb{R}$ is the matrix $\begin{bmatrix} a & b \\ b & a \end{bmatrix}$ diagonalizable. For what values of $a, b \in \mathbb{R}$ is the matrix is the matrix $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ diagonalizable? Explain your answer.

5. (12pts) Let
$$A = \begin{bmatrix} 2 & 6 & 2 & 2 & 4 \\ -1 & -2 & -1 & 1 & -2 \\ 5 & 15 & 5 & 3 & 14 \\ 2 & 7 & 2 & 2 & 8 \end{bmatrix}$$
. Find a basis for Nul A, Col A, Row A

respectively.

6. (8pts) Consider the discrete dynamic system $x_{k+1} = Ax_k$ where $A = \begin{bmatrix} \frac{3}{4} & p \\ \frac{1}{16} & \frac{3}{4} \end{bmatrix}$.

(a) If A has 2 positive real eigenvalues, for what values of p is the origin an attractor? And for what values of p is the origin a saddle point?
(b) When -1
(c) When p = 1, we can conclude that x_k = c₁λ₁^kv₁ + c₂λ₂^kv₂. Find λ₁, λ₂, v₁, v₂.
(d) When p = 1, the trajectory starting from a general point x₀ = [r₁/r₂] is lying on a line l₁ and will approach another line l₂. Find the equation of l₁ and l₂.